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The study of correlation structures in DNA sequences is of great interest because it allows us to obtain
structural and functional information about underlying genetic mechanisms. In this paper we present a study of
the correlation structure of protein coding sequences of DNA based on a recently developed mathematical
representation of the genetic code. A fundamental consequence of such representation is that codons can be
assigned a parity class �odd-even�. Such parity can be obtained by means of a nonlinear algorithm acting on the
chemical character of the codon bases. In the same setting the Rumer’s class can be naturally described and a
new dichotomic class, the hidden class, can be defined. Moreover, we show that the set of DNA’s base
transformations associated to the three dichotomic classes can be put in a compact group-theoretic framework.
We use the dichotomic classes as a coding scheme for DNA sequences and study the mutual dependence
between such classes. The same analysis is carried out also on the chemical dichotomies of DNA bases. In both
cases, the statistical analysis is performed by using an entropy-based dependence metric possessing many
desirable properties. We obtain meaningful tests for mutual dependence by using suitable resampling tech-
niques. We find strong short-range correlations between certain combinations of dichotomic codon classes.
These results support our previous hypothesis that codon classes might play an active role in the organization
of genetic information.
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I. INTRODUCTION

The study of correlation structures in DNA sequences is
of great interest because it allows us to obtain structural and
functional information on the genetic mechanisms. In par-
ticular, short-range correlations of three base pairs have been
generically ascribed to the codon organization of protein
coding regions �see �1�, and references therein�. However, a
satisfactory theoretical explanation for such short-range cor-
relations which, for instance, takes into account the impor-
tance of the relative position of the bases along the reading
frame, is still lacking. In this paper, we investigate this prob-
lem by means of a recent mathematical model of the genetic
code �2–4� together with rigorous statistical methods applied
to protein coding sequences of DNA. The mathematical
model is used as a front end for the binary coding of such
sequences.

The genetic code is a translation table connecting differ-
ent biochemical words: the world of nucleic acids, molecules
that store the relevant biological information, and the world
of proteins, the essential chemical bricks for cellular metabo-
lism. Every group of three contiguous bases �a codon� in
messenger RNA �mRNA� is assigned to a specific amino
acid by the genetic code; this determines the linear assem-
bling ordering of such amino acids in the forming polymeric
chain of a specific protein. The four bases used for coding
genetic information in the single helix of mRNA are uracil
�U�, cytosine �C�, adenine �A�, and guanine �G�. The actual
sequence of bases in a mRNA is obtained through the sub-
stitution of the thymine base �T� by uracil in the coding

segments of DNA. This process is called transcription, while
protein synthesis performed by the ribosome complex fol-
lowing mRNA instructions is called translation. Since the
information content of both coding DNA and mRNA is the
same, in the following we use either U or T interchangeably.

The total possible number of codons in mRNA is 64, i.e.,
all the combination of four objects �the four bases U, C, A,
G� in groups of three �the number of bases in a codon�. As
the amino acids used for proteins synthesis are only 20 �21
different symbols if we include the stop signal marking the
end of protein synthesis�, degeneracy and redundancy there-
fore follow. In fact, one of the main topics related to the
research on the genetic code has been the study of its degen-
eracy properties. One important fact related to such degen-
eracy was noted early by the Russian theoretical physicist
Yu. B. Rumer in the 1960’s �5�. Rumer showed that exactly
one-half of the quartets of the genetic code specifies amino
acids with degeneracy 4 �a family�, while the other half
specifies amino acids with degeneracy 1, 2, or 3. We recall
that a quartet is a group of four codons sharing the first two
letters, as for example, �UUx�= �UUU,UUC,UUA,UUG�.

Rumer’s class is a dichotomic class in that a codon can
assume either the value 4 or the value �1, 2, or 3�; see Table
I. Rumer’s key observation was that a global transformation
acting on the bases, i.e., U,C,A,G↔G,A,C,U, transforms
a codon of class 4 into a codon of class 1, 2, or 3, and vice
versa. In this respect, Rumer’s transformation reveals the ex-
istence of an intrinsic antisymmetric property of the genetic
code. In the following we show that, by using a recently
developed mathematical theory for the genetic code, two
new codon classes can be defined, i.e., the parity and the
hidden classes. These classes are also antisymmetric with
respect to the other two global transformations of the bases.
We show also that the three global transformations of the*Corresponding author. simone.giannerini@unibo.it
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bases, together with the identity, form a Klein V group of
symmetry. Moreover, dichotomic codon classes can be ob-
tained by means of nonlinear operators that act on matrices
built from four consecutive bases of the DNA sequence.

Some authors have proposed that error correction capa-
bilities of the code in a coevolutive context �coevolution of
the genetic information and the genetic codes� might be re-
lated to the actual shape of the genetic code �6–8�. We also
conjecture that the structure of the code is tightly linked to its
error detection or correction capabilities �as previously pro-
posed in �3,9��. However, in our case, such possibility is
investigated on the basis of a direct mathematical description
of the genetic code. Also other approaches �not necessarily
related to the error correction hypothesis� have highlighted in
an evolutionary context the existence of mathematical struc-
tures in the genetic code. We mention, for example, those
based on a Lie algebra �10�, and, more recently, on p-Adic
numbers �11�. A different approach based on a quantum al-
gebra (Uq→0�sl�2� � sl�2��) has been extensively investigated
�12�. For recent developments and applications based on this
model, see �13� and references therein. Notice that our ap-
proach differs from previous ones since it is based upon dis-
crete symmetries related to nonpower integer number repre-
sentations; our model describes all the degeneracy properties
of the genetic code in a unified fashion �2–4�. Moreover, the
new definition of the parity codon class reinforces the inter-
esting possibility of error detection or correction mechanisms
based on parity control. Such a possibility turns out to be
even more attractive in the light of recent results showing
that parity can be defined at a molecular level and represents
a key element for chemical error correction and consequently
for the selection of actual bases in present DNA and RNA
molecules �14�.

The paper is organized as follows. In the second section
we briefly present the mathematical model of the genetic

code. Section III is devoted to the definition of the two di-
chotomic codon classes that arise from the mathematical
model. Section IV presents the statistical framework that al-
lows the analysis of coding sequences of DNA in this con-
text. In Sec. V we show and discuss the results pertaining to
the statistical analysis of protein coding sequences. Such re-
sults motivate the theoretical definition of the third dichoto-
mic class, the hidden class. Finally, Sec. VI presents conclu-
sions and perspectives for future investigations.

II. MATHEMATICAL BACKGROUND

In this section we briefly present the mathematical model
of the genetic code used for the definition of the codon di-
chotomic classes. The reader is referred to �2–4� for a com-
prehensive description. Such model is based on the so called
nonpower representation of integer numbers �15� which al-
lows to explain many structural properties of the degeneracy
distribution and new symmetry transformations of the ge-
netic code.

Usual positional number representations are called power
representations because the numbers are additively decom-
posed following the powers of a number called the basis of
the numeration system. Decimal systems use the basis b
=10 and thus a number represented in this system is addi-
tively decomposed in the powers of 10. For example, the
number 93 458 means that 93 458=9�104+3�103+4
�102+5�101+8�100. We know that in the decimal sys-
tem the digits representing the number are limited between 0
and �b−1�=9. This ensures a one-to-one representation.
However, we are interested in describing nonbijective �i.e.,
non-one-to-one� applications and thus we resort to nonpower
number representations. In nonpower number representations
the positional values grow more slowly than the powers of
the system basis b. For example, for a binary system �b=2�,
such values need to grow more slowly than the powers of 2.
The redundant Fibonacci number representation is a good
example of this kind of systems. Fibonacci numbers, i.e.,
1, 1, 2, 3, 5, 8, …, grow more slowly than the powers of 2,
i.e., 1, 2, 4, 8, 16, 32, … . The Fibonacci representation is of
little interest in this context because it does not possess the
same degeneracy distribution of the genetic code. Neverthe-
less, it can be proved �2� that a unique set of nonpower bases,
i.e., 1, 1, 2, 4, 7, 8 describes exactly the degeneracy of the
genetic code. Such a description is a structural isomorphism
between the genetic code and the nonpower representation; it
can become a proper model by establishing correspondences
between represented numbers and amino acids on the one
side, and binary strings and chemical codons, on the other
side. This is achieved by comparing the symmetry properties
of the genetic code with those of the nonpower representa-
tion. Table II synthesizes the main features of the model �see
caption�.

III. DICHOTOMIC CODON CLASSES

The model represented in Table II associates a length-6
binary string to every codon of the genetic code and a whole
number from 0 to 23 to every amino acid �including the stop

TABLE I. �Color online� Graphical representation of the classi-
fication of triplets in Rumer’s classes. Green �light gray� boxes
indicate triplets belonging to the class �1,2,3�, red �dark gray� boxes
indicate triplets belonging to the class �4�.
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signal�. Notice that the codon AUG codifies both the the start
signal and the amino acid Methionine. In �3� it has been
shown that the parity of a codon’s binary string, defined as
the parity of the digits sum, is related to the chemical prop-
erties of the two last bases of the codon. This parity index
can be extracted by means of a nonlinear rule as shown in
Fig. 1�a�. For the definition of both the parity and other
codon class dichotomies we use the unique three possible
chemical binary classifications for the bases T, C, A, and G;
the symbolic labeling is the following:

�purine;pyrimidine� �R;Y� �A,G;C,T� ,

�keto;amino� �K;Am� �T,G;A,C� ,

�strong;weak� �S;W� �C,G;A,T� .

In words, the rule of Fig. 1�a� can be described as follows. If
the last letter of the codon is a purine �R=A,G�, the parity of
the binary string is immediately obtained: an A corresponds
to an odd string and a G to an even string. If the last letter is
instead a pyrimidine �Y=C,T�, in order to determine the

parity we need to observe the chemical character of the pre-
vious base in the codon, that is, the second or middle base.
However, in such a case we have to consider a different
chemical dichotomy: if the second base belongs to the amino
class �Am=A,C�, the corresponding string is even; if, in-
stead, it belongs to the keto class �K=T,G�, the correspond-
ing string is odd. Now we show for the first time that a
completely similar rule holds also for the determination of
Rumer’s degeneracy classes. In order to achieve this �i� shift
the analysis window to the first two bases of the codon, �ii�
consider the keto-amino dichotomy for the middle base �as
suggested by the parity algorithm; see Fig. 1�a��, �iii� use the
dichotomy class strong �S=C,G� or weak �W=A,T� for the
first base. The algorithmic rule for Rumer’s class is presented
in Fig. 1�b�. At this point it is important to notice that there
exists a global transformation of the bases �Rumer’s trans-
formation�, i.e., �T,C,A,G↔G,A,C,T�, that flips the
Rumer’s class of a codon. This means that Rumer’s class is
antisymmetric with respect to Rumer’s transformation. No-
tice that such transformation is a global transformation act-
ing on all the three bases of the codon; however, the same
effect on the Rumer’s class is obtained if we consider only
the first two bases of the codon �the third base is noninflu-
ential�. Moreover, Rumer’s transformation can be seen as a
composition between the other two possible global transfor-
mations. These transformations �T,C,A,G↔A,G,T,C, and
T,C,A,G↔C,T,G,A� exchange bases inside the S-W and
R-Y dichotomies, respectively. Observe that Rumer’s trans-
formation corresponds to the exchange inside the third pos-
sible chemical dichotomy �K-Am�. Furthermore, following
the parity rules defined before, it is easy to ascertain that the
R-Y transformation changes for sure the parity of a codon.
Thus we find that parity and Rumer’s classes are antisym-
metric with respect to the two global transformations K-Am
and R-Y, respectively. In view of these findings, it is some-
how natural to hypothesize that a third dichotomic class ex-
ists. Such class should be antisymmetric with respect to the
third global transformation �S-W� and should be also deter-

TABLE II. �Color online� Representation of the first 24 whole numbers �outer columns� in the nonpower representation defined by the
positional weights �1 1 2 4 7 8� �length-6 binary strings, horizontal rows�. The degeneracy number �D�, number of binary strings that
represent the same whole number, and the corresponding amino acids are shown in the center of the table. Notice that the table is
symmetric �palindromic symmetry� and that the amino acids are associated in pairs �pairs of palindromic amino acids, e.g., Trp/Met�. The
colors indicate the parity of each string �green/light gray=odd, red/dark gray=even�.

FIG. 1. Algorithmic representation of the codon dichotomic
classes: �a� parity class, �b� Rumer’s class; 1…4 indicate the
degeneracy.
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mined by a nonlinear rule similar to that shown in Figs. 1�a�
and 1�b�. Remarkably, such framework defines a Klein V
group structure. In order to prove such a statement, define
the bases as four-dimensional column vectors as follows:

T� = �1000�, C� = �0100�, A� = �0010�, G� = �0001� ,

�1�

where the prime symbol denotes transposition. The possible
global transformations of the bases are implemented by the
usual matrix product together with the following permutation
matrices:

L =�
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0
� M =�

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0
�

N =�
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
� �2�

which are associated to the transformations

T,C,A,G ↔ G,A,C,T; T,C,A,G ↔ C,T,G,A;

T,C,A,G ↔ A,G,C,T,

respectively. If we include the identity matrix, I, the set �2�
form an Abelian group, indeed the Klein V group. In fact, it
is easy to ascertain that L ,M ,N are orthogonal and the fol-
lowing identities hold:

LM = ML = N, LN = NL = M, MN = NM = L .

Moreover, if we define the infinite order matrix norm for a
m�m square matrix Q as

	Q	� = max
1�i�m



j=1

m

�qij�

we can obtain the following operators:

O1 =�
0 0 0 0

0 0 0 0

1 2 2 1

0 0 3 4
�, O2 =�

0 0 0 0

1 2 1 2

0 4 3 0

0 0 0 0
� .

These operators act on a 4�4 square matrix built up with
four consecutive vectors or bases. The values of the two
classes c1=parity, c2=Rumer can be obtained through the
following operation:

ci = 	Oi�Q�	� mod 2, i = 1,2, �3�

where � denotes the matrix Hadamard product.
Now, the hypothesized third dichotomic codon class �we

call it the hidden class� by analogy with Rumer’s and parity
classes needs to be defined with a further shift of the analysis
window by one base position to the 5� end of the sequence.
Hence the hidden class is determined by the first letter of a

codon and the last letter of the previous one. Moreover, if we
maintain the choice of the S-W dichotomy induced by Rum-
er’s class on the first letter of the codon, the chemical di-
chotomic class for the last letter of the previous one will be
necessarily of one of the two possible types, R-Y or K-Am.
In this way the antisymmetric property of the third global
transformation �S-W�, i.e., T ,C,A,G↔A,G,T,C, is kept.
In the following sections we will show that the right choice
is the K-Am dichotomic arising naturally from the statistical
analysis of protein coding DNA sequences.

IV. METHODS

In a previous work �3� we have analyzed the univariate
dependence structure of parity sequences generated from
protein coding DNA regions, that is, we focused on the sta-
tistical properties of single sequences. Now, the theoretical
framework developed here requires a multidimensional, po-
sition dependent approach, e.g., we compare pairwise chemi-
cal or dichotomic codon classes. An example of the position
dependent chemical coding is illustrated in Fig. 2. The first
row reports the DNA sequence, while the second and the
third rows show the K-Am coding performed on the third
codon bases and the S-W coding performed on the first
codon bases, respectively.

As concerns the dichotomic codon classes, notice that the
coding is computed on two contiguous bases and depends on
the open reading frame. The coding is illustrated in Fig. 3
where the bases involved are highlighted in cyan �gray�; in
this case, both classes are coded “out of frame 1,” namely,
the coding starts from the second base.

The statistical analysis of binary sequences obtained by
means of our coding framework is based on the implemen-
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S-W binary

sequence

CGCAATC
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-W
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m

K
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K-Am binary

sequence
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FIG. 2. Scheme of the position dependent coding for the K-Am
class in the third codon position and the S-W class in the first codon
position.

FIG. 3. �Color online� Scheme of the position dependent coding
for the parity and the hidden classes, both of them out of frame 1,
i.e., the first base is discarded. The coding involves a window of
two consecutive bases in cyan �gray�.
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tation of a bivariate version of the metric entropy measure
S�, a normalized variant of the Bhattacharya-Hellinger-
Matusita distance. This version corresponds to a two-
dimensional implementation of the methods employed in �3�.

The measure S� is defined as follows:

S��k� =
1

2
� � �f �Xt,Yt+k��x,y� − fXt

�x�fYt+k
�y��2dxdy ,

where fXt
�·� and f �Xt,Yt+k��· , · � denote the probability density

function of Xt and of the vector �Xt ,Yt+k� respectively. In our
case Xt�·� is a random process that measures which nucle-
otide appears at position t whereas �Xt ,Yt+k� is the bivariate
random process that measures the joint appearance of Xt�·� at
position t and Yt+k�·� at position t+k. S� is in precise math-
ematical relationship with other entropy functionals such as
Shannon entropy and Kullback-Leibler divergence and can
be interpreted as a nonlinear crosscorrelation function pos-
sessing many desirable properties not present in other en-
tropy functionals. For a detailed discussion on the definition,
implementation and estimation issues of S�, see e.g., �16�.
The measure has been proven to have impressive and robust
power for characterizing nonlinear processes. In particular, it
has been shown that tests based upon S� have very good
performances in terms of power and size �see �17��. In the
binary case the double integral reduces to summation and
probabilities �Pr�·�� are estimated through relative frequen-
cies:

S��k� =
1

2

i=0

1



j=0

1

�Pr�Xt = i,Yt+k = j�

− Pr�Xt = i�Pr�Yt+k = j��2.

In order to obtain appropriate confidence bands for S��k�,
several issues have been considered: �i� the null hypothesis
we test is that of independence between binary sequences,
that is, the absence of an informational organization between
codons; �ii� such test has to take into account the different
proportion of bases across DNA sequences, i.e., the possible
correlation found does not have to depend from the GC or
other biologically meaningful contents; �iii� when comparing
dichotomic classes the test does not have to depend on cor-
relations induced by their definition; in fact, some specific
combinations of dichotomic classes and reading frames in-
duce nonzero spurious correlations even in random se-
quences. The above requirements can be satisfied by resort-
ing to suitable nonparametric bootstrap or permutation
schemes. The original DNA base sequence is randomly per-
muted. On this new sequence, the chemical �or dichotomic�
classes are computed and the measure S� is estimated. The
procedure is repeated B times �say B=5000� as to obtain the
bootstrap distribution of S��k� under the null hypothesis.
Clearly, each permutation of the original data preserves the
original proportion of bases and this fulfils requirement �ii�.
Also, the computation of the measure S� on two binary se-
quences obtained from the same random permutation of
DNA bases automatically accounts for coding-induced corre-
lations and fulfils point �iii�.

V. RESULTS

In order to investigate whether the mathematical structure
implied by the model finds a correspondence in real genetic
sequences, we have analyzed the whole set of 88 different
protein coding DNA sequences listed in �18�. We have com-
puted the cross entropy measure on all the possible nontrivial
combinations of chemical classes. For each sequence, we
have 36 different cases �27 concerns comparison between
two different chemical classes, see, e.g., Fig. 2�.

A representative example of the results for the chemical
classes is shown in Fig. 4. The figure can be interpreted
similarly to crosscorrelograms: at a given lag k, S��k� shows
the dependence between Xt and Yt+k. The dashed lines corre-
spond to confidence bands at levels 95% �green/light gray�
and 99% �blue/dark gray�, obtained under the null hypothesis
of independence as described before. We found very strong
short range correlations �indeed, at lags −1, 0, and 1� for
particular position configurations. In detail, we observe
strong correlations for the R-Y dichotomy in the third posi-
tion and the K-Am one in the second. These correlations are
clearly related to the parity class �see Fig. 1�a��; a further key
result is that K-Am �3rd bases� and S-W �1st bases� classes
present strong correlations at lags 0 and 1. This finding sup-
ports the hypothesis of the existence of the hidden class.
Furthermore, consistently with the group structure and the
antisymmetric properties described above, the former results
suggest to choose the K-Am class for the last base of the
previous codon in the definition of the hidden class. Hence
the resulting algorithmic representation of the hidden class is
shown in Fig. 5 and the associated matrix operator is

O3 =�
2 1 1 2

0 4 0 3

0 0 0 0

0 0 0 0
� .

−4 −2 0 2 4

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

0.
00

6

lag

S
rh

o

−4 −2 0 2 4

lag

FIG. 4. �Color online� S��k� computed on K-Am �3rd bases� and
S-W �1st bases� �left�, and on R-Y �3rd bases� and S-W �1st bases�
�right�. Dashed lines: confidence bands at levels 95% �green/light
gray� and 99% �blue/dark gray�.
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Observe that the existence of the hidden class implies
some surprising consequences from both chemical and infor-
mational points of view. In particular, the genetic informa-
tion contained in a codon is not simply that corresponding to
the coded amino acid; indeed, there exists a complex struc-
ture that correlates the information content of a given codon
with that of neighboring ones. Such informational properties
seem to be associated with the possibility of error correction
mechanisms as previously reported �3�. In fact, this hypoth-
esis implies the existence of short range correlations between
these newly defined dichotomic codon classes. Codon
classes are clearly linked to chemical classes; however, as we
have shown above, the mapping between them is nonlinear
and involves two contiguous bases. Hence the correlation
pattern of dichotomic codon classes is essentially different
from that of chemical classes and provides a new way to gain
insights on the informational structure of protein coding se-
quences. Thus as a further step in the statistical analysis, we
have computed the cross entropy between the three codon
classes �parity, Rumer, and hidden�. As for chemical classes,
we have computed the cross entropy measure on all the non-
trivial combinations of dichotomic codon classes �by taking
also into account reading frame shifts and complementary
antisense computation�. For each sequence we have 51 dif-
ferent cases �36 concerns comparison between two different
codon classes�.

A representative example is shown in Fig. 6 where we
report S��k� computed on the three dichotomic classes �all of
them with frame shift 1�: parity vs Rumer’s �left�, parity vs
hidden �center�, Rumer’s vs hidden �right�.

The results are again particularly informative. In fact, we
found a strong correlation between the parity and the hidden
classes at lag -1, frame shift 1 �see Fig. 6, center�. We have
observed such a remarkable correlation in 66 out of 88 se-
quences analyzed. Moreover, the dependence is much stron-
ger �up to ten times� than that observed for chemical classes.
In Table III we summarize the most interesting results per-
taining to the whole set of combinations. The Table reads as
follows: the second column indicates the combination of di-
chotomic codon classes where P=parity, R=Rumer, H
=hidden; the shift with respect to the reading frame is indi-

cated with a number: 0=no shift; 1=one base shift; 2=two
base shift; the suffix “a” indicates the computation of the
dichotomic class upon the complementary strand in reverse
sense. The third column indicates the lag at which the cross
entropy exceeds the confidence bands at 95%. The fourth
column reports the frequency of exceedances. Finally, the
last column shows the bases involved in the computation of
the codon classes: the numbers 1, 2, 3 and 4, 5, 6 indicate the
ordered bases of two contiguous codons. The overbar indi-
cates the complementary base in the corresponding position.
For instance, row number 4 refers to the correlation between
the hidden class computed in the reading frame and the
Rumer’s class computed on the reverse complementary se-
quence with frame shift 1. In this case we observe 78 out of
88 sequences having a significant correlation at lag −1. The
bases involved are the last of a codon and the first of the
following one �hidden class� and the first and the second of
the following one subject to the complementary transforma-
tion and reversed �Rumer’s class�.

TABLE III. Summary of the most significant results regarding
correlations between dichotomic codon classes �see text for the
description�.

# Combination Lag Frequency Bases

1 R1–R1a 0 49 /88 23–4̄5̄

2 R1–R2a 0 78 /88 23–3̄4̄

3 H1–P1 −1 66 /88 45–34

4 H0–R1a −1 78 /88 34–4̄5̄

5 H0a–R1 0 84 /88 3̄4̄–23

6 H0a–R2a 0 60 /88 3̄4̄– 3̄4̄

7 H1–R1a −1 88 /88 12–1̄2̄

8 H1a–R1 1 79 /88 2̄3̄–23

9 H2–R1 0 82 /88 23–23

10 H2a–R0a 1 58 /88 1̄2̄– 2̄3̄

11 H2a–R1a 0 84 /88 1̄2̄– 1̄2̄

a
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a
1

W

Am

b
3

b
2

H
1

H
2

H
1

H
2

S

GCK

b
1

FIG. 5. Algorithmic representation of the coding of the hidden
class; H1 and H2 denote the two categories of the class.
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The main points that emerge from Table III are �i� only in
two combinations �3, 9� we observe significant correlations
involving bases belonging to the sense strand. Both of them
include the third base of a codon, the base related to redun-
dancy in the amino-acid coding. This fact is compatible with
our hypothesis on error correction �3�. However, differently
from combination 9, combination 3 involves bases of two
different codons. This correlation is particularly important
because is not the consequence of either the coding scheme
or the proportion of bases, as explained in the previous sec-
tion. Hence, we can assert that there is a mechanism of short
range information transmission along codons based upon the
redundancy of amino acid coding. �ii� Significant correla-
tions between the same dichotomic class computed out of its
definitory position are observed only for the Rumer’s class
�see rows 1 and 2�. �iii� Remarkably, all the remaining sig-
nificant correlations involve only the hidden-Rumer combi-
nation and include a complementary antisense computation.
In particular, we observe three combinations �5, 7, 11� with
significant lags in more than the 95% of the sequences ana-
lyzed. Note that, combination 5 is analogous to combination
3 in that it involves bases of two different codons and in-
clude the wobble base in one of them. Moreover, combina-
tions 7 and 11 involve the same couple of bases and exclude
the wobble base. Thus we may conjecture that these last two
correlations may be related to the protein structure.

VI. CONCLUSION

In this work, we have further developed a theoretical ap-
proach for the description of the genetic code �2,3� which has
relevant consequences for the understanding of the organiza-
tion of genetic information in coding sequences of DNA. On
the basis of such theory the existence of a dichotomic codon
class, i.e., the parity class, emerges in a natural way. This
class has a clear mathematical meaning �the parity of binary
strings of digits� and can be derived by means of a nonlinear
algorithm acting on the two last bases of a codon. On the
same ground we have shown that Rumer’s class �5�, i.e., the
codon class describing the degeneracy of the genetic code,
can be obtained by applying a similar algorithm to the first
two bases of a codon. Both classes exhibit an antisymmetric
behavior under the action of two specific global transforma-
tions of the bases. Since a third global transformation exists,
i.e., the complementary transformation, it is reasonable to
conjecture the existence of a third class, the hidden class,
which is antisymmetric with respect to such transformation.
Thus the dichotomic codon classes, together with their asso-
ciated antisymmetric transformations, can be put in an el-
egant unified mathematical framework possessing the group
property.

On the basis of this theoretical development, new insights
about the informational structure of real sequences of protein
coding DNA regions can be derived. In fact, with the aid of
this new coding strategy, we can generate from DNA se-
quences binary sequences corresponding to the codon

classes. In order to study the mutual dependence of such
binary sequences we have implemented a metric-entropy
measure S� that can be interpreted as a nonlinear crosscorre-
lation function. The measure possesses many desirable prop-
erties not present in other entropy functionals �16,17�. By
means of these methods, we have analyzed a set of 88 dif-
ferent protein coding DNA sequences. For each sequence we
have computed the cross entropy measure on all the possible
nontrivial combinations of both chemical classes and codon
classes. The results of the analysis are summarized in Table
III. The main points to be remarked regarding chemical
classes are �i� we found very strong short range correlations
for the R-Y dichotomy in the third position and the K-Am
one in the second. These correlations are clearly related to
the parity class �3�. �ii� Significant correlations are found
also for the K-Am dichotomy �3rd bases� and the S-W one
�1st bases�. Consistently with the group structure and the
antisymmetric properties described above, this result con-
firms the existence of the hidden class and emphasizes the
K-Am role of the third base of a codon for its definition.

Regarding the statistical analysis of dichotomic codon
classes, the main results are �i� we found remarkable short-
range correlations one order of magnitude greater than those
of the chemical classes. �ii� These correlations neither de-
pend on the proportion of bases of the sequence, nor are a
consequence of the coding algorithm. This is granted by the
resampling methods employed. �iii� We observe significant
correlations that involve bases of two different codons. This
implies the existence of a mechanism of short range infor-
mation transmission along the coding sequence. �iv� Those
correlations emerging from antisense computations involve
mainly the hidden-Rumer combination. The bases involved
in one of these combinations exclude the wobble base and
pertains to a single codon suggesting that these last correla-
tions may be related to the protein structure. Remarkably,
many of the correlations found seem to be universal: the
same behavior is observed on almost all the protein coding
sequences of the sample set �see Table III, rows 5, 7, 9, 11�.

As previously suggested �3,4,9�, the results support the
idea that the genetic information is organized according to a
nonlinear mathematical structure that allows error detection
and correction. Notice that a dynamical system framework
has been also proposed in a context related to the structure of
the dynamics of chromatin in order to account for observed
long range correlations �19�. This nonlinear dynamics para-
digm is very appealing and deserves indeed a great deal of
attention and further research. In this line of reasoning, the
present work represents a further step in connecting a math-
ematical theoretical framework with the informational struc-
ture of DNA and mRNA molecules. One of the main aims is
the uncovering of error detection and correction mechanisms
based on nonlinear coding and decoding of genetic data.
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